传统的神经结构倾向于通过类似数量(例如电流或电压)进行通信,但是,随着CMOS设备收缩和供应电压降低,电压/电流域模拟电路的动态范围变得更窄,可用的边缘变小,噪声免疫力降低。不仅如此,在常规设计中使用操作放大器(运算放大器)和时钟或异步比较器会导致高能量消耗和大型芯片区域,这将不利于构建尖峰神经网络。鉴于此,我们提出了一种神经结构,用于生成和传输时间域信号,包括神经元模块,突触模块和两个重量模块。所提出的神经结构是由晶体管三极区域的泄漏电流驱动的,不使用操作放大器和比较器,因此与常规设计相比,能够提供更高的能量和面积效率。此外,由于内部通信通过时间域信号,该结构提供了更大的噪声免疫力,从而简化了模块之间的接线。提出的神经结构是使用TSMC 65 nm CMOS技术制造的。拟议的神经元和突触分别占据了127 UM2和231 UM2的面积,同时达到了毫秒的时间常数。实际芯片测量表明,所提出的结构成功地用毫秒的时间常数实现了时间信号通信函数,这是迈向人机交互的硬件储层计算的关键步骤。
translated by 谷歌翻译
自动基于图像的疾病严重程度估计通常使用离散(即量化)严重性标签。由于图像含糊不清,因此通常很难注释离散标签。一个更容易的替代方法是使用相对注释,该注释比较图像对之间的严重程度。通过使用带有相对注释的学习对框架,我们可以训练一个神经网络,该神经网络估计与严重程度相关的等级分数。但是,所有可能对的相对注释都是过敏的,因此,适当的样品对选择是强制性的。本文提出了深层贝叶斯的主动学习与级别,该级别训练贝叶斯卷积神经网络,同时自动选择合适的对进行相对注释。我们通过对溃疡性结肠炎的内窥镜图像进行实验证实了该方法的效率。此外,我们确认我们的方法即使在严重的类失衡中也很有用,因为它可以自动从次要类中选择样本。
translated by 谷歌翻译